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Motivation to Si-based photonics:
• Emerging problems of modern microelectronics – “intra- and

interconnects bottleneck”
• Rapid development of fiber-optic communication systems

Photonics is the technology associated with signal generation, processing, 
transmission and detection, where the signal is carried by photons (i.e. light). 

Si-based photonics. Motivation.

600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10 Quartz fibers

Absorption by metall- 
     and OH- inos 

Rayleigh
scattering

IIIII

I

Lo
ss

es
, d

B/
km

Wavelength, nm

-50

0

50

100

150

200  Specific m
aterial dispersion, ps/km

.nm



Si-based photonics. Motivation.
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Emerging problems of modern 
microelectronics:
Electrical intra- and interconnects 
bottleneck:
• limiting speed and signal integrity
• increasing power density and heat

dissipation problem



Si-based photonics. Motivation.

N. Daldosso et al. Laser & Photon. Rev. (2009)

The first end-to-end Si photonic 
integrated link  (INTEL 2010)

Sub-µm waveguide technology 
for chip-scale communication  
(Kotura 2011)

Vision for 2018 – optically 
connected 3D supercomputer 
chip  (IBM)



Si-based photonics. Motivation.

InP Si

Energy band diagrams and major carrier transition processes in InP and 
silicon crystals. In a direct band structure (such as InP, left), electron-hole 
recombination almost always results in photon emission, whereas in an indirect 
band structure (such as Si, right), free-carrier absorption, Auger recombination 
and indirect recombination exist simultaneously resulting in little photon emission.

Di Liang, J.E. Bowers, Nature Photonics, 4, 511 (2010)



Light-emitting structures on Si basis
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Optical activation of Si by the rare earths elements
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Rare earths elements Silicon

Effective
optical transitions Advanced electrical properties

Cerium   Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium  Erbium     Thulium       Ytterbium

εg,Si = 1,12 eV

at Т=300 К

H. Ennen et al. Appl. Phys. Lett., vol. 43, p. 943, 1983.

In the majority, the rare earths elements are characterized by the high efficiency 
of their intrashell optical transitions. The diagram shows the energies of 4f-shell 
transitions for rare earth elements in comparison with the Si bandgap energy.



4I9/2
4I11/2

4I13/2

4I

4I15/2

Low symmetry 
crystal field

ΔMJ=0 ΔMJ=±1

Interaction with 
magnetic field

Zeeman splitting:
H = gμBB×S2Γ6

(2)+ Γ7
(2)+2 Γ8

(4)

Γ6
(2)+ Γ7

(2)+3 Γ8
(4)

quadruplets

doublets

Crystal field of 
cubic symmetry

Free ion Er3+

The energy levels of the rare earth ions split in the crystal and 
magnetic fields. The crystal field splitting depends on the 
crystal field symmetry. 

Energy level diagram of Er3+ ions in the crystal and 
magnetic fields

4d104f115s25p6

Stark splitting:



Energy position of the rare-earth impurity 4f levels in 
semiconductors

C. Delerue, M. Lannoo, Phyis. Rev. Lett., vol. 67, p. 3006, 1991.



Energy transfer processes in Er doped silicon
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Er3+ intra-4f 
transitions

Wd

gEr

(a) exciton-mediated

The excitation mechanism of Er3+ ions in Si under optical pumping is the exciton-
mediated mechanism, where an optically generated electron-hole pair forms an 
exciton that can be trapped by the Er-related level in Si bandgap and then 
recombine nonradiatively transferring their energy to Er3+ ion. In the reverse 
process, an optically excited Er3+ ion decays nonradiatively creating a bound 
exciton, which can dissociate with the formation of free electron-hole pair. Exciton 
trapping (WT) and dissociation (WD), Er3+ excitation (WE) and energy backtransfer
(WBT) mechanisms are shown on the scheme by horizontal arrows. 
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Auger quenching and impact excitation of Er ions

4I13/2

4I15/2

Er3+ intra-4f 
transition

Si

с

v (b) Auger quenching (c) Impact excitation

Free carriers Auger recombination is the main de-excitation mechanism 
of Er3+ ions in Si structures under high excitation conditions, though the 
impact excitation can be successfully used in devices.

Free carriers Auger 
recombination can prevent the 

photon emission



Er incorporation in Si

Solid solubility of Er in Si ~ 1016 cm-3 at 1300°C   → nonequilibrium
incorporation methods (ion implantation, MBE, CVD) have to be used.

Er implanted Si: implantation dose –
1.2·1014cm-2, energy 500keV, implantation 
was carried out at 130ºC, annealing at 
900ºC, 30min.

Concentration limit set by the onset of 
Er precipitation in ion implanted 

structures - 5·1017 cm-3 

[D.J. Eaglesham et al. APL. 58, 2797 (1991)]

Strong interaction of Er impurity with O within 
the Si matrix:

(i) increases the effective solubility of Er in Si 
[S. Coffa et al., Phys.Rev.B 48, 11782 (1993)]

(ii)  inhibits Er segregation during solid phase and 
molecular beam epitaxy

[J.S. Custer et al., JAP 75, 2809 (1994), R. Serna et al., 
APL 66, 1385 (1995) ]

Concentration of the optically active Er centers ~ 10% of the total amount of Er

“Coimplantation of Er and O in the ratio of 1:10 enable to incorporate up 
to 1020 Er cm-3 in crystalline Si” [S. Coffa et al., MRS Bull. 23, 25 (1998)]



Er doped Si structures grown by the 
sublimation MBE technique
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Si substrate

Si:Er:O polycrystalline plate

sublimation

T= 400-700 oC

T= 1150-1260 oC

Si

SiEr
Er

O
O

Shutter

_

M. Stepikhova et al., Acta Physica Polonica A (1998)

Advantages of 
Sublimation MBE method:

> High doping level (≤ 1021 cm-3);
> Precise control of the doping 

profiles;
> Capability to grow the uniformly 

doped structures as well as the 
structures with the desired 
impurity profiles;

> Growth of the high-pure Si 
layers with the residual doping 
level <  2·1013 cm-3;

> Fast and variable growth rate -
0.2-5 μm/h;

> Inexpensive installation.

All structures were grown by the 
SMBE method, designed and 
applied for the first time in Nizhny 
Novgorod. Today we may be a 
unique group which grows 
structures by such a method.

Sublimation molecular beam epitaxy



Sublimation MBE in germane gas atmosphere: 
growth of Si/SiGe:Er structures
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Si substrate

Si:Er:O polycrystalline plate

sublimation

T= 400-700 oC

T= 1150-1260 oC

Si

SiEr
Er

O
O

Shutter

_

V.G. Shengurov et al., Semiconductors (2002)

GeH4 pressure :
8·10-6 - 9·10-4 Torr

The specificity of the growth method in germane 
(GeH4) gas atmosphere consists in the 
combination of the standard SMBE procedure with 
the elements of CVD. In this method, the fluxes of 
Si and Er are produced by the sublimation of the 
appropriate Er-doped and Si sources, where Ge
doping occurs through the pyrolysis reaction of the 
GeH4 gas nearby the current-heated Si substrate.
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c) Тsub=550оС, Vgrowth=1 nm/min (Тsource=1220оC).



source: polycrystalline Si:Er (Er - up to 1021 cm -3 )

growth conditions: substrates  – CZ-Si (100),
Tgr= 300-700 °C,  
growth rate – 0.2- 5 μm/h

post annealing: Tann= 700-900° C  (in  H2 or in vacuum)

Layer parameters:
Si/Si:Er structures: dSi:Er = 2 nm - 3 μm 

[Er] ∼ (0.5-5)⋅1018 сm -3 - SIMS data
[O] ∼ (1-10)⋅1019 сm -3 - SIMS data
n300K ≤ 1018 сm –3 - C-V, Hall data
χmin<100> = 3-5% - RBS data

Si/SiGe:Er structures: dSiGe:Er = 10 nm - 2.5 μm
Ge content ≤ 40% - XRD data
[Er] ∼ (0.1-5)⋅1018 сm -3 - SIMS data 
[O] ∼ (2-20)⋅1018 сm -3 - SIMS data

Z.F. Krasilnik et al. in Towards the First Silicon Laser, NATO Science Series (2003).
L. Krasilnikova, et al., Phys. Stat. Sol. (c), vol. 8, pp. 1044 (2011).

Parameters of Si:Er and SiGe:Er structures grown by 
sublimation MBE

Si substrate

Si
SiGe:Er

Si substrate

Si
SiGe:Er

Si substrate

Si
SiGe:Er



CV-profile of the selectively doped 
Si:Er structure # 990.

The thicknesses of Er doped layers: 
20 Å, 10 Å, 400 Å, 500 Å.
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Periodic Er-doped Si and Si/SiGe structures



The center formation depends on 
the growth temperature and 
annealing conditions.

Formation of the centers identical 
to those identified in Er implanted 
Si has been observed.

The novel optically active center, 
namely the center Er-1, was 
observed in the sublimation MBE 
grown structures. This center 
starts to form in Si:Er layers at 
the growth temperature of 
approx. 560°C.

A.Yu. Andreev et al., J. of Cryst. Growth (1999)
M.V. Stepikhova et al., Thin Solid Films (2001)

Optically active Er centers in PL response of Si:Er
structures grown by the sublimation MBE
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The role of an annealing procedure:

M. Stepikhova et al.,  Mat. Sci. & Eng. (2001)
Z.F. Krasilnik et al. in Towards the First Silicon Laser, NATO Science Series (2003)

Optically active Er centers in PL response of Si:Er
structures grown by the sublimation MBE
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Preferential formation of a single type centers in SMBE structures -
optically active center Er-1

B.A. Andreev et al., Bulletin RAS, Ser. Phys. (2000) 
N.Q.Vinh et al., Physica B (2001) 

T = 4.2 K

High-resolution scan of 
the most intense L1

1 line in 
the Er-1 series. 

It is the least value of 
the PL peak width, which 
was observed in silicon.
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The position and intensity ratio of PL lines are well 
reproducible in various samples obtained under different 
growth conditions.

1

We have every reason to believe that all peaks in Er-1 series relate to one center:
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Identical dependence of the luminescence intensity on 
the excitation power has been obtained for all lines in 
Er-1 series.
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Identical temperature behavior has been observed for all 
lines in Er-1 series.3
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All of the main PL lines are accompanied by the “hot” ones 
that correspond to the transitions from the upper levels of 
excited 4I13/2 multiplet.
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Zeeman splitting: main PL line
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1 
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(011) crystallographic plane.
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Microscopic structure of the Er-1 centre

Line        - B // <100>: 3 components
Line          - B // <011>: 7 components 
Line          - B // <100>: 4 components
Line          - B // <011>: 5 components

Orthorhombic I (C2V)

Not cubic
Symmetry

1
1L
1
1L
2
1L
2
1L

N.Q. Vinh et al., Phys. Rev. Lett. (2003), 
Phys. Rev. B (2004)

Er

Si

O

The microscopic structure of Er-1 
center consists of an Er3+ ion 
occupying a Td interstitial site in 
Si lattice with 8 oxygen atoms in 
the direct surrounding.



PL response of Si/Si1-xGex:Er structures
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Different type of the optically active Er centers dominate in PL spectra of Si/Si1-xGex:Er/Si 
structures depending on the Ge content. One can show that the Er-O related centers similar 
to those observed in Si:Er layers dominate in the PL response of Si/Si1-xGex:Er/Si structures 
with the Ge content < 25%. Novel type of centers, namely Ge-related centers appear in the 
structures with the Ge content ≥ 25 %.

High resolution PL spectra
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Optically active Er centers in Si/Si1-xGex:Er 
structures with Ge content ≥ 25%
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The lines observed behave identically depending on the 
excitation power and are well reproducible in various 
samples. This indicates that the lines belong to the same 
optically active Er center → center Er-Ge1.
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L.V. Krasilnikova, Semiconductors (2009).



The line intensity of the center Er-Ge1 decreases with the increasing temperature. 
The Er related PL is not detectable in Si/Si1-XGeX:Er structures at Т ≥ 110 K. Novel 
line series appears in PL spectra at elevated temperatures (T > 8K). 

Temperature dependence: appearance of 
new line series in PL spectra
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49448.33.54-6.276434.8 cm-1

3524811.12-5.96457.6 cm-1

252489.69-5.26472.6 cm-1

22349.14.59-6.56501.6 cm-1

141551.22.5911.36423.8 cm-1

113851.82.5912.66443.5 cm-1

125950.83.5911.76468.1 cm-1

108950.83.3611.16481.6 cm-1

127850.11.1312.26508.1 cm-1

C2E2, meVC1E1, meVPL line

Er-Ge1 center

Er-Ge2 center

Deactivation energies and coupling constants describing the temperature 
quenching of PL lines in the spectra of Si/Si1-xGex:Er/Si structures with Ge
content ≥ 25%.

Er related centers:
Er-Ge1:  E1 ~ 12 meV, E2 ~ 51 meV, Er-Ge2:  E1 ~ -6 meV, E2 ~ 48 meV,

C1 ~ 2.65,     C2 ~ 1236;                             C1 ~ 7.24, C2 ~ 330. 

Temperature dependence of PL lines related  
with Er centers
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Microscopic structure of Er centers being formed in 
structures with Ge content ≥ 25%

The center Er-Ge1 belongs to the low symmetry Er centers and consists of an Er ion in the 
interstitial position and at least 2 Ge atoms in the nearest surroundings. The most probable types 
of symmetry of this center are - C2v, D2d, Cs. The second center belongs to the Er-Ge centers as 
well. Both centers are differing by their crystal field symmetry. The symmetry variations might be 
related with the different location of Ge atoms and the presence of strain in Si1-xGeX layers. 



PL quantum efficiency of Si:Er and SiGe:Er structures 
produced by the sublimation MBE technique

The external quantum efficiency

ηext ≈ 0.3 - 0.5 % at 4.2 K.

(Ppump = 14 mW)

The internal quantum efficiency

ηi ≥ 15 % at 4.2 K.

These values exceeds those obtained 
for the Er implanted Si structures 
(data presented by   F. Priolo et al., 
Phys. Rev. B. 57, 4443).

B.A. Andreev et al., Proceed. of ICPS-26 (2003)
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M.V. Stepikhova et al., J. of Cryst. Growth (2006),
L. Krasilnikova, et al., Phys. Stat. Sol.(c) (2011).



Light emitting diodes on Si:Er basis

Light emissionLight emission



FORWARD BIAS REGIME R E V E R S E   B I A S  R E G I M E
Junction breakdown: 

tunneling                       avalanche

Impact ionization of Er3+ ions

Mechanisms of Er ion excitation in EL regime

Exciton (e-h) mediated 
excitation of Er3+ ions

History of Er-doped Si LEDs:

(1985) H. Ennen et al., APL 46, 381 – forward bias diode, 77 K;
(1994) F. Priolo et al. APL 64, 2235 – tunneling diode, 300 К;
(1997) N.A. Sobolev et al. APL 71, 1930 – avalanche diode, 300 К;
(1997) C.-X. Du et al. APL 71, 1023 – Shottky diode, 300 К.

LT RT



Room temperature operations

tunneling mixed avalanche

3.9 / 6.0 V 6.8 / 7.1 V 11.1 / 9.6 V

microplasma
(current pinching)

Breakdown voltage:  Ubr (300К)/ Ubr (77К)

1,2 1,3 1,4 1,5 1,6

77K

forw. 77K

300K

 

 Wavelength, μm
E

L 
in

te
ns

ity
, a

.u
.

1,2 1,3 1,4 1,5 1,6

77K

300K  

 

 

1,1 1,2 1,3 1,4 1,5

300K

 

 

 

Tunneling - Avalanche

-6 -4 -2 0 2

-300

-200

-100

0

100

200

300
10 A/cm2

300K

77K

 

 I,
 m

A

 

U, V
-20 -15 -10 -5 0 5

-200

-100

0

100

200

300

10 A/cm2

300K
77K

 

 I,
 m

A

 

U, V

High luminescence 
efficiency has been 

obtained for Si:Er LEDs
operating in the mixed 

breakdown regime, where: 
the effective excitation 
cross section of Er ions 

σ =1.4x10-16 cm2, 
lifetime τ =540 µs, 

electroluminescence yield 
~ 1 µW. 

Z.F. Krasilnik et al. in Towards the First Silicon Laser, NATO Science Series (2003),
V. Shmagin et al., Phys.Sol.St. (2004).

From tunneling to avalanche type diodes on Si:Er basis

Si:Er layer
n+ - Si substrate, 

0.008-0.01 Ohm*cm buffer

metallic ringEL
p+- contact

1.54 μm

Si:Er layer
n+ - Si substrate, 

0.008-0.01 Ohm*cm buffer

metallic ringEL
p+- contact

1.54 μm



tunneling

High luminescence 
efficiency was obtained for 

Si:Er LEDs operating in 
the mixed breakdown 
regime. The effective 

excitation cross section of 
Er ions in this regime is:

σ =1.4x10-16 cm2, 
lifetime τ =540 µs, 

electroluminescence yield 
~ 1 µW.

mixed avalanche

3.9 / 6.0 V 6.8 / 7.1 V 11.1 / 9.6 V

2 6 10
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1.4*10-20
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Ubreak, V

V. Shmagin et al., 
Phys.Sol.St. (2004)

T=300K

Breakdown voltage:  Ubr (300К)/ Ubr (77К)

microplasma
(current pinching)

From tunneling to avalanche type diodes on Si:Er basis



Concept of the multidiode type structures

M. Stepikhova et al., Patent RU2407109C1 (2009)
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Structure parameters:Structure parameters:
p+: Si:B, p ~ 4·1018 cm-3, d = 30 nm,   
n : Si:Er, n ~ 1016 cm-3, d = 50 nm, 
n+:    Si:P, n ~ 2·1018 cm-3, d = 8÷40 nm, 

5 5 pp++--nnSi:ErSi:Er--nn++ periodsperiods

Structure with the different thickness of n+

layers was grown during the one growth cycle

Electric field simulations
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Concept of the multidiode type structures
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CurrentCurrent--voltage characteristicsvoltage characteristics

Both the 
breakdown voltage 
and the EL intensity 
show the saturation 

dependence on
the thickness of n+

layer.
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Comparison of the EL intensities obtained for the 
«multidiode» and single diode structures

EL signal in the multidiode structure 
increases proportionally to the total 
thickness of Er doped layers introduced in 
the active diode pairs. The breakdown 
voltage of the one pair is less than the 
breakdown voltage of a singe diode.
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M. Stepikhova et al., Patent RU2407109C1 (2009)

Concept of the multidiode type structures



Novel concept of the tunneling transit-time LED

Tunneling transit-time diode is a way to avoid 
microplasma breakdown

n-Si:Er
n ∼ 1016 cm-3, d~500nm

n++p++

n+-Si (n∼1018 cm-3, d~20-30 nm) 

E

x

Highly doped narrow region, where 
the hot electrons are generated. 
Zenner breakdown of the p-n junction.

Wide, moderately doped transit-time region, 
where the excitation of Er3+ ions takes place. 

Potentialities:
Widening of the space charge region.

Increase of the EL intensity and excitation efficiency. 

Light emission

V.B. Shmagin et al., IEEE Journal of Selected Topics in Quantum Electronics (2006)

microplasma
(current pinching)

microplasma
(current pinching)



Novel concept of the tunneling transit-time LED

КДБ-10     p ∼ 1015 cm-3

n-Si:Er     d ∼ 0.5 μ n∼1016 cm-3

p+-Si
n+-Si

n+-Si

КДБ-10     p ∼ 1015 cm-3

n-Si:Er     d ∼ 0.5 μ n∼1016 cm-3

p+-Sip+-Si
n+-Si

n+-Sin+-Si

n+-Si: d = 10 ÷ 50 nm, n = 2·1018 cm-3

V. Shmagin et al., Semiconductors (2010)
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Wn-Si:Er ≈ 0.5 µm, T = 300K



W. Jantsch, J. of Lumin. (1999), W. Jantsch, Mat. Sci. & Eng. (2001).
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Optically active Er centers being responsible for the 
LEDs RT operations in reverse bias regime

The strong EL signal at room temperature 
observed in heavily Er and O doped silicon 
LEDs is related with the so-called SiOx:Er
precipitate type centers.



Towards the laser realization

1.54 μm

Si

Si
SiGe:Er

Amplifying mediumMirror Partially transparent 
mirror



Optical gain in Si:Er structures. Theory.

PL decay time: τ ~ 1 ms
Width of PL line: Δν ~ 10 μeV
Photon absorption: σ ≈ 10-17÷10-16 cm2

Free carrier absorption : γ ~ 1 cm-1

Concentration of  the optically
active Er3+ centers                      N0

E ~ 3×1017 cm-3

Z.F. Krasilnik et al. in Towards the First Silicon Laser, NATO Science Series (2003)
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Optical gain of about
30 cm-1 should  be expected for 

active Si:Er layers



Optical gain in Si:Er structures. Experiment.



N1

N0

pump
decay

Er

Er

NNNg
dt

dN
constNNN

τ
1

1
1

10

)( −−=

=+=

,...),,( excheexc hNIgg ν−=

Inversion: N1>N0

The relative number of Er ions being in the excited state 
can be directly determined trough the ratio of PL rise and 

decay times.
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Balance equations:

ES

GS

M.V. Stepikhova et al., JETP Letters, 2005
M.V. Stepikhova et al., J. of Cryst. Growth, 2006

Observation of the population inversion of Er ion states 
in Si/Si1-xGex:Er/Si structures
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Dependence of the PL intensity on pump 
power density

PL transients measured at different pump 
power densities

Experiment:
PL transients were measured under Cu-laser excitation (hνexc= 2.1, 2.4 eV) with the pump 
power densities varied form 0.01 to 10 W/cm2. The signal was dispersed by the 50 cm 
monocromator and detected with an InGaAs photodiode. All measurements were 
performed at temperatures of ~10 K in the closed cycle He-cryostat. Spectral resolution of 
the system – 2nm, time resolution – 0.2 ms.

Observation of the population inversion of Er ion states 
in Si/Si1-xGex:Er/Si structures
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Structure parameters:  
Si buffer layer SiGe:Er layer Si сup layer 

Sample Substrate 
dbuff, nm dSi-Ge, nm х, % Source dcup, nm 

# 10-156 Si:P - 4.5 Ω⋅cm 
(100) 50 1100 28 % 

RES = -9±10% Si:P - 2 Ω⋅cm 220 

M. Stepikhova et al., JETP Letters (2005)

Observation of the population inversion of Er ion states 
in Si/Si1-xGex:Er/Si structures



Waveguides with an active Er doped layer 
on Si basis
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xGe = 28 %, W = 50 мкм,
dSi1-xGex:Er = 1.1 мкм, dSi-cup = 0.22 мкм

Si substrate

Si1-xGex:Er active layer
Si-cup layer

Si substrate
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W
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Si-cup layer

Si substrate

Si1-xGex:Er active layer
Si-cup layer

W
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X Y

Z

n (Si) = 3.48
n (Si1-xGex, x = 10%) = 3.53 
n (Si1-xGex, x = 30%) = 3.63

n (SiO2) = 1.5

Si:Er
SiO2 (1,5)

Si:Er
SiO2 (1,5)

Si/Si1-xGex:Er/Si waveguides

SOI/Si:Er waveguides



Laser cavities

Bragg mirrors: 
dSi-wall = 320 nm
dair = 1155 nm 
number of Si/air pairs:
N = 1 → R = 0.9191
N = 5 → R = 1. 

Laser threshold condition:
1( ) ( ) ( )a c mβ α α α− Γ

= + +
Γ

gain
losses in an 
active layer

losses in 
confinement layers

mirror losses

1 2

1 1( ) ln
2

m
L R R

α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

cavity length L > 0.1 mm

 

dwall=0.320 µm 
dair=1.155 µm 

Bragg mirror 

Si substrate 

Bragg mirror Active cavity 

Si1-xGex:Er active layer 

5 pairs 1 pair 

active layer

 

dwall=0.320 µm 
dair=1.155 µm 

Bragg mirror 

Si substrate 

Bragg mirror Active cavity 

Si1-xGex:Er active layer 

5 pairs 1 pair 

active layer

Active cavity:
Γ = 1,
losses ~ 1 cm-1,
gain = 2 – 10 cm-1.

4 um
1 um

FIB etching

4 um
1 um

FIB etching

Si:ErSi:Er

SOI/Si:Er cavities

Z.F. Krasilnik et al., St. Petersburg, 2012



Laser cavities

Simulations for Si0.7Ge0.3 disk resonator
(radius a = 18 μm, height h = 0.22 μm)

TE264 2 1 (λ = 1.534 μm)

TE264 3 1 (λ = 1.503 μm)

TE264 1 1 (λ = 1.537 μm)

N. Yurasova et al., J. Lumin. (2012), Z.F. Krasilnik et al., St. Petersburg, 2012

Si cap layer

SiGe:Er active layer

20 μm

3 μm

Si buffer layer & 
substrate

20 μm

Disk resonator made of Si0.7Ge0.3:Er
(radius a = 18 μm, height dSiGe:Er = 2 μm)



Conclusions

Applying the optical doping with the Er impurity we are able 
to realize effective light-emitting Si and SiGe structures 
operating at the wavelength of 1.54 µm. The internal quantum 
efficiency of the photoluminescence for these structures 
reaches the value of 20% at 4.2 K. 

The light-emitting diodes with the output power of  5 µW that 
operate at the room temperature were realized on this basis.

There are the prerequisites that testify to the ability for a 
laser realization on the basis of Er doped Si and SiGe
structures. 



Questions?







MBE structures (IPM RAS)
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Ion-implanted structures
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K.J. Vahala // Nature 424, 839 (2003)

High  and ultrahigh Q laser cavities



Optically active Er centers in Si matrixes. 
Er implanted Si.

Er implantation:
ion energies : 320keV, 600keV (at room 

temperature) and 2 MeV (at 350°C)
doses: 1012- 1015 cm-2 (Er concentrations 

1017- 1020 cm-3)

Subsequent annealing procedures:
600 °C – solid state epitaxy; 

600°C + 900°C;  
one step annealing at 600 ÷ 1100°C

(in N2 atmosphere)
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Optically active Er-centers distinguished in 
Er-implanted Si

PL line pattern is a fingerprint of an Er center
M.V. Stepikhova et al., PhD thesis



Parameters of Si/Si1-xGex:Er structures grown by the 
sublimation MBE in germane gas atmosphere

X-ray diffraction and SIMS data

Sample #10-145
XGe=23%, RES=65%, 

dSiGe:Er=0.15µm

Sample #10-156
XGe=28%, RES=-9±10%, 

dSiGe:Er=1.1µm
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Sample parameters:
n-Si substrate /n-Si buffer/ n-Si1-XGeX:Er /n-Si capSi1-XGeX:Er layers:

dSiGe:Er = 0.01÷2.5 μm,
Ge content ≤ 35%,

RES = 0÷100%,
[Er] = (0.1÷5)⋅1018 сm-3,
[O] = (2÷20)⋅1018 сm-3



Si/Si1-xGex:Er structures grown by the sublimation MBE 
in germane gas atmosphere

TEM cross sectional images

A
B

A
B

Substrate +buffer

AB

Substrate +buffer

AB

Measured by N. Zakharov, P. Werner, Max-Planck Institute of Microstructure Physics, Halle 
(Saale), Germany.
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Electro-optical storage on Si:Er basis
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Structure parameters:
n+ = 6*1018 cm-3

n = 2*1015 cm-3 , d = 10 mkm
Si:Er active layer, n ~ 1016 cm-3 , d = 70 nm
n = 2*1015 cm-3, d = 1 mkm
substrate, p+ = 1017cm-3

Erasing
forward bias pulse,
or light pulse (λ < 1.06 µm)

Recording
100 ms at zero bias

Reading
reverse bias pulse

Erasing
low reverse bias pulse

Electro-optical storage

n-Si
n-Si:Er nanolayer
n-Si
n+-Si

p+-Si substrate

Optical output
λ = 1.54 µm

n-Si
n-Si:Er nanolayer
n-Si
n+-Si

p+-Si substrate

n-Si
n-Si:Er nanolayer
n-Si
n+-Si

p+-Si substrate

Optical output
λ = 1.54 µm

B.A. Andreev et al. Appl. Phys. Lett. (2006).
D.I. Kryzhkov et al. PCT Patent 2007/082329 (2007).
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Electro-optical storage: principle of operation

Er-O complex in Si matrix. 
Such complex can result in the 

formation of some potential well in 
the Si band gap.

λ= 0,514 μm

Er-O

Si, εc

Si, εv
4I15/2

4I13/2

λ= 0,514 μm

Er-O

Si, εc

Si, εv
4I15/2

4I13/2

4I15/2

4I13/2

Er-OEr-O

A part of the e-h pairs 
generated by an argon laser 
can form the excitons and 
excite Er ions, whereas the 
another part can be trapped 
into the potential well in the 
band gap.
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Electrons localized in the 
potential well can be 
released by the application 
of an electric field. Free 
electrons will be 
accelerated by the electric 
field and after their energy 
reaches the value of 0.8 eV
they will excite erbium ions. 

reading / erasing 

recording



Si1-xGex:Er active layer
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Si substrate
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Optical confinement in a planar waveguide 
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Optical mode distribution:

Depending on the Ge content refraction index of    
Si1-xGex layers can be varied in high extend enabling 
the strong localization of the optical modes. 

Optical confinement factor Γ → 0.98
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Si/Si1-xGex/Si structure: xGe = 60 %,
dSiGe:Er = 1.2 µm, dSi-cap = 0.2 µm

Z.F. Krasilnik et al., J. Mater. Res. (2006).



Ион Er3+: уровни энергии и оптические
переходы в 4f оболочке

Energy levels for free Er3+ ion
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Свободный ион Er3+

Ион Er3+ в
кристаллическом поле
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