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3aKOH AMcnepcum Nnaa3meHHbIX BOH B
0H6BbEMHbBIX MaTepmManax

nyCTb B cpeae umeetcAa NA10OTHOCTb TOKa j, O6nyIOBI'IeHHaFI KonebaHnem 3dPAXKEHHbIX HaCTUL.. Ecnn gaviHa BOAIHbI N1a3MOHa
cyweCTtBeHHO 6onblie AO/TNHbI CBO60,CI,HOFO np06era S/1EKTPOHA, TO BbINOJIHAETCA
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[1n1a3meHHble BOJIHblI B MeTa/1/1aX
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Wellen langs eines Drahtes." Annalen der Physik 303.2 (1899): 233-290.
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Bo3byxaeHne NOBEePXHOCTHbIX M/1a3MOHOB

(KOHPUrypauma KpetumaHa)
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8‘| the boundaries silver/air (1) and silver/quartz (2) calculated from the
m eta“ optical constants 8, The light which is incident in quartz at the angle 6,
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1/ 2 isindicated by the light line (3). The maximum excitation of the surface
mode takes place where line (3) cuts the curve (1). Line (4) represents
the light measured at the angle 6.

1.0f

o° o o©
'S o\ o0

KoaddumueHt oTpaskeHus

©
(39}

0.0

66 68 70 72 74
Vron nagesus. @°

Prcynok 1.3 — XapakTepHast 3aBICHMOCTS KO3()(DIIIIEHTa OTPaKeHIS OT yTIa

nageHns 1t koHdurypanun Kpeumana [34].

Zeitschrift fir Naturforschung A. 1968 Dec 1;23(12):2135-6.



Bo36byKaeHne NoBEepPXHOCTHbIX M/1a3MOHOB
KOHPUrypauma OTTo

Fig.2.7T. The ATR method: Dispersion
relation DR of SPs for a quartz/metal/air
system e = 1, ¢ : light line in vacuum,
¢f+/20 : light line in the medium ey. Since
the light line ¢/,/&g lies to the right of the
DR up to a certain kg, light can excite SPs
of frequencies w below the crossing point P on
the metal/air side. The SPs on the interface
0/1 metal/quartz cannot be excited, since
their DR lies to the right of ¢/,/Z7 because
eg>1
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Fig. 6. Experimental dispersion wm(k) of the nonradiative SPW at the silver air-interface
and = k¢ for plane waves in air



Bo36yKaeHne NoBEePXHOCTHbIX M/1a3MOHOB
(MCnob30BaHME peLleTKK)
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FIG. 1. (a) Geometry of the configuration under study and co-
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periodically arranged ridges. Period is 800 nm.

polariton excitation on ridges. Physical Review B, 78(11), 115115.



J1azepbl Ha MOBEPXHOCTHbIX NM/1a3MOHaX

nOBerHOCTHbIe MnNna3sMoOHHblE MO[bI, 3aKIMlO4EeHHbIE Ha rpaHunue pasgerna Mexay Metaryiom U
nonynposoaHNKOM, UCMNOJIb3YKOTCA BMECTO 0ObIYHbIX AN3TNTIEKTPNYHECKUX BOJTHOBOJOB B KKIJ1

c=d" @

depletion

: p region

' .
I:///////;’f//// X

I SPW =0

1. Kumar P, Tripathi VK, Liu CS. Journal of Applied
Physics. 2008;104(3):033306.

2. Tredicucci A, Gmachl C, Wanke MC, Capasso F, i
Hutchinson AL, Sivco DL, Chu SN, Cho AY. Applied |
Physics Letters. 2000; 77(15):2286-8. ‘ Distance (s m)

Miniband 1

‘ Miniband 2
I” Illllll

/ : Injector region

1 stage




J1BymMepHble n/1a3MOHbl

azq(a), z) = o(w)6(2) ; 0 ( k(z) OE) ) _ 4o (w)S8(2)E| — ie()E 0= |q2— a)_ZK
x 02(z) 0z W L c?
E\(z) = E; exp(—Q2z)
d 2mo(w) w2 e’ng ypaBHeHme wv\eeT pelleHmne
— |g?——k=0 olw)=1i
lwK c? wm  BcCay4ae, \/—— > — = Upp
2 _ w? + kmw? i 2me’ng
=K 2me’n, MnasmMoH XopoLlo onpeaeneH Npu w > —

/ o “ \/ i“/j 30 o p-Sil100), g=5um n=t
A= 337 um SHADOWED
znezns T T=2K /" UNSHADOWED 1/’
W — :_ ol 010
/ V (a) e 9 -
E 0.05L SR

1. AllenS.J., Tsui D. C, Logan R. A. // Phys. Rev. Lett. 10 -

— 1977 77777777 s
2. Theis T., Kotthaus J., Stiles P. // Surface Science. — o S U —
1978. — V. 73. — p. 434—436. ns (10%em?)



YyeT NPOCTPaHCTBEHHOW ANCNEPCUN
MONAPU3IYEMOCTU SNEKTPOHHOIO rasa
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FIG. 1. System under consideration with the gate and the 2DES
assumed to be infinite in y.
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[ eHepauma AByMepPHbIX MNJ1a3MOHOB B
NOJ1I€BbIX TPAH3UCTOPAX
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FIG. 1. Schematic structure of the ballistic FET. The gate
length L is much smaller than the mean free path A but much
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Fig. 1. (Left) Energy bands of graphene showing stimulated absorption of plas-
mons. (Right) Population inverted graphene bands showing stimulated emission
of plasmons.
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Fig. 3. Calculated plasmon dispersion relation in graphene at 77 K is plotted for
different electron-hole densities (# = p=1. 2.3 .4 x 1010 ¢m=2). The con-
dition w(q ) > vy is satisfied for frequencies that have net gain in the terahertz

range. The assumed values of v and 7 are 10° cm/s and 0.5 ps, respectively.
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Fig. 4. Net plasmon gain (interband gain minus intraband loss) in graphene
at 77 K is plotted for different electron-hole densities (n = p =
1.2.3.4 x 1010 ¢m—2). The assumed values of v and 7 are 10° cm/s
and 0.5 ps, respectively.
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