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Введение: HgCdTe

2A .Rogalski Rep. Prog. Phys. 68, 2267 (2005)

Варьируемая Eg в твёрдых р-рах Hg1-xCdxTe : от 1.6 эВ при x = 1 до 0 эВ при x = 0.168 
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Механизмы рекомбинации
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hν

Валентная зона

Зона проводимости

(a) (b) (c)

(a) излучательная рекомбинация

(b) рекомбинация Шокли-Рида-Холла

(c) оже-рекомбинация



Рекомбинация Шокли-Рида-Холла
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hν

(a) (b) (c)

В исследуемых нами структурах канал рекомбинации ШРХ насыщается уже
при умеренных интенсивностях накачки и не препятствует генерации СИ

𝑛1 = 𝑁𝑐exp(−
𝐸𝑐 − 𝐸𝑓

𝑘𝑇
)

𝑝1 = 𝑁𝑣exp(−
𝐸𝑓 − 𝐸𝑣

𝑘𝑇
)

𝑓 𝐸𝑓 =
𝑛0

𝑛0 + 𝑛1
=

𝑝0
𝑝0 + 𝑝1

𝜏𝑛0 =
1

𝑐𝑛𝑁𝑓
𝜏𝑝0 =

1

𝑐𝑝𝑁𝑓
𝜏𝑆𝑅𝐻 = 𝜏𝑛0

𝑝0 + 𝑝1 + 𝛿𝑛

𝑛0 + 𝑝0 + 𝛿𝑛
+ 𝜏𝑝0

𝑛0 + 𝑛1 + 𝛿𝑝

𝑛0 + 𝑝0 + 𝛿𝑝

в условиях сильного возбуждения:

𝜏𝑆𝑅𝐻 = 𝜏𝑛0 + 𝜏𝑝0

приближение малой концентрации дефектов:



Излучательная рекомбинация
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hν

(a) (b) (c) 𝑑𝛿𝑛

𝑑𝑡
= 𝐺 − 𝑅 = 𝐺 − 𝐵𝑟𝑛𝑝

тепловое равновесие, 𝑛0𝑝0 = 𝑛𝑖
2:

𝑅0 = 𝐺0 = 𝐵𝑟𝑛0𝑝0 = 𝐵𝑟𝑛𝑖
2

𝑅𝑟 = 𝐵𝑟𝑛𝑝 − 𝐺0 = 𝐵𝑟 𝑛𝑝 − 𝑛0𝑝0 = 𝐵𝑟 𝑛𝑝 − 𝑛𝑖
2

𝜏𝑟 =
𝛿𝑛

𝑅𝑟
=

1

𝐵𝑟 𝑛0 + 𝑝0 + 𝛿𝑛

−
𝑑𝛿𝑛

𝑑𝑡
=
𝐵𝑟 𝑛0 + 𝑝0 + 𝛿𝑛 𝛿𝑛

1

𝛿𝑛(𝑡) =
𝛿𝑛0

1 + 𝑡
𝛿𝑛

𝑛0 + 𝑝0 𝜏0

при 𝑡 ≪ 𝜏0

𝜏0 =
1

𝐵𝑟 𝑛0 + 𝑝0



Излучательная рекомбинация
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Оже-рекомбинация
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hν

(a) (b) (c) 𝑅𝑛 = γ𝑛𝑛
2𝑝

𝑅𝑝 = γ𝑝𝑝
2𝑛

𝜕𝑛

𝜕𝑡
= 𝐺 + 𝛽𝑛𝑛 − 𝛾𝑛𝑛

2𝑝 + 𝛽𝑝𝑝 − 𝛾𝑝𝑝
2𝑛

при 𝐺 = 0 и тепловом равновесии:

𝛽𝑛 = 𝛾𝑛𝑛𝑖
2 𝛽𝑝 = 𝛾𝑝𝑛𝑖

2
𝑛 = 𝑛0 + 𝛿𝑛, ; 𝑝 = 𝑝0 + 𝛿𝑝;

𝛿𝑛 = 𝛿𝑝 (оптическое возбуждение)

𝛾𝑛,𝑝 = 𝛾 𝑇

уравнение баланса:

слабое возбуждение: 𝛿𝑛, 𝛿𝑝 ≪ 𝑛0

сильное возбуждение: 𝛿𝑛, 𝛿𝑝 ≫ 𝑛0𝜕𝑛

𝜕𝑡
= 𝐺 −

𝛿𝑛

𝜏
𝜏 =

1

2 𝛾𝑛 + 𝛾𝑝 𝑛𝑖
2

п/п 𝑛-типа: 𝑛 ≈ 𝑛0 ≫ 𝛿𝑝

п/п 𝑝-типа: 𝑝 ≈ 𝑝0 ≫ 𝛿𝑛

𝜏 =
1

𝛾𝑛𝑛
2

𝜏 =
1

𝛾𝑝𝑝
2

𝜏 =
1

2 𝛾𝑛 + 𝛾𝑝 𝛿𝑛2

В.Н. Абакумов, В.И. Перель, И.Н. Яссиевич
«Безызлучательная рекомбинация  в полупроводниках»



Пороговая энергия оже-рекомбинации
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𝐸𝑡ℎ=
𝜇

1 + 𝜇
𝐸𝑔 , µ =

𝑚𝑒

𝑚ℎ
𝑅𝐴𝑢𝑔𝑒𝑟 ∝ ex p( −

𝐸𝑡ℎ
𝑇
)

ЗСКИ и ЗСЭ:

Точные расчёты дают (В.Н. Абакумов, В.И. Перель, И.Н. Яссиевич
«Безызлучательная рекомбинация  в полупроводниках»):

𝑝1 + 𝑝2 + 𝑝3 = 𝑝4, 𝑝4~ 2𝑚𝑒𝐸𝑔

𝐸𝑘𝑖𝑛 =
𝑝1
2

2𝑚𝑒
+

𝑝2
2

2𝑚𝑒
+

𝑝3
2

2𝑚ℎℎ

𝑝3 ≫ 𝑝1, 𝑝2֜𝑝3~𝑝4~ 2𝑚𝑒𝐸𝑔

𝐸𝑘𝑖𝑛~
𝑝3
2

2𝑚ℎℎ
=

2𝑚𝑒

2𝑚ℎℎ
𝐸𝑔 =

𝑚𝑒

𝑚ℎℎ
𝐸𝑔 = µ𝐸𝑔 = 𝐸𝑡ℎ, µ ≪ 1

(в случае параболических законов дисперсии)



Пороговая энергия оже-рекомбинации
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(в случае гиперболических законов дисперсии)

𝑘𝑓 − 𝑘𝑖 = −(𝑘ℎ − 𝑘𝑒)

𝐸𝑓 − 𝐸𝑖 = −(𝐸ℎ − 𝐸𝑒)

ЗСЭ и ЗСКИ:
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(в случае гиперболических законов дисперсии)



Пороговая энергия оже-рекомбинации
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(в случае гиперболических законов дисперсии)

𝑘𝑓 − 𝑘𝑖 ≠ −(𝑘ℎ − 𝑘𝑒)

𝐸𝑓 − 𝐸𝑖 ≠ −(𝐸ℎ − 𝐸𝑒)



Пороговая энергия оже-рекомбинации
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(в случае гиперболических законов дисперсии)

𝑘𝑓 − 𝑘𝑖 ≠ −(𝑘ℎ − 𝑘𝑒)

𝐸𝑓 − 𝐸𝑖 ≠ −(𝐸ℎ − 𝐸𝑒)
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Пороговая энергия оже-рекомбинации
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(в случае гиперболических законов дисперсии)
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Беспороговая оже-рекомбинация в КЯ
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Пороговая («объемная») 
оже-рекомбинация

PL3.9 мкмPL9.8 мкм

+
Беспороговые оже-процессы 

с переходом носителей в 
барьерные слои

В более узкозонных структурах
для дальнего ИК диапазона (10+ мкм):

Только «классические» оже-процессы

Нет беспороговых процессов!

В структурах
для диапазона 3-5 мкм:

Возможны как «классические» оже-процессы,
так и оже-процессы с выбросом носителей из 

КЯ в состояния континуума!



Беспороговая оже-рекомбинация в КЯ
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Eth(CCHC)55meV Eth(CCHC)58meV

Прямой расчет темпов излучательной 

и пороговой оже-рекомбинации:

Auger/rad30 !

при T=250K, n21011 см2

Hg0.92Cd0.08/Cd0.65Hg0.35Te QWs Hg0.92Cd0.08/Cd0.75Hg0.25Te QWs

h1EV

Ece1

PL



“Резонансные” CHHH оже-процессы
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V.Ya. Aleshkin et al. JPCM, 31(42), p.425301
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“Резонансные” CHHH оже-процессы

16

0 50 100 150 200 250
0

10

20

30

40

50

60

70

T
re

s
h

o
ld

 e
n

e
rg

y
, 
m

e
V

Temperature, K

 CHCC

 CHHH12

 CHHH13

V.Ya. Aleshkin et al. JPCM, 31(42), p.425301

1

2

3

2

1

0



Плазмонная рекомбинация
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𝜔 =
2𝜋𝑒2𝑞

𝜀

𝑛

𝑚𝑒
+

𝑝

𝑚ℎ

V. Ya. Aleshkin et al 2020 J. Phys. Commun. 4 11501

ħ𝜔𝑚𝑎𝑥 𝑞 = 𝜀 𝑘𝑓 + 𝑞 − 𝜀(𝑘𝑓)

𝐸𝑔
𝑒𝑓𝑓

𝑞 − минимум 𝜀𝑒 𝒌 + 𝜀ℎ 𝒌 − 𝒒 по 𝑘

HgTe/Cd0.7Hg0.3Te 5 nm QW



Плазмонная рекомбинация
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K. Kapralov et al 2020 J. Phys.: Condens. Matter 32 
065301

V. Ya. Aleshkin et al 2020 J. Phys. Commun. 4 11501

HgTe/Cd0.7Hg0.3Te 5 nm QW



Заключение
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• В КЯ HgCdTe спектр носителей квазигиперболический в окрестности
k=0, что подавляет пороговую оже-рекомбинацию

• Пороговая энергия оже определяется высотой «боковых
максимумов» - спектральных особенностей в 1-й валентной подзоне

• В исследованных КЯ возможны как «классическая» пороговая оже-
рекомбинация, так и специфичные беспороговые оже-процессы

• Для подавления беспороговой оже-рекомбинации необходим рост
структур с высокими барьерами, а подавление пороговой оже-
рекомбинации также требует роста максимально «чистых» ям

• Высота боковых максимумов может определять времена
излучательной рекомбинации при высоких уровнях накачки
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