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Множество называется подгруппой группы G, если оно само является группой 

с той же групповой операцией. 

Определения

Множество G называется группой, если

1. Определена операция умножения                     :

2. Ассоциативность умножения

3. Существование единичного элемента

4. Существование обратного элемента
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 Левосторонним смежным классом по подгруппе H называется множество
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 Группу G можно разложить в прямую сумму левосторонних смежных классов:
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 Число классов j называется индексом подгруппы H в группе G. Из разложения 

следует Теорема Лагранжа: .|||| HjG

 H называется инвариантной подгруппой (нормальным делителем) группы G, если 

порождаемое ей разбиение на левосторонние смежные классы совпадает с разбиением 

на правосторонние.



 Группу G можно разбить на классы сопряженных элементов

Справедлива теорема: подгруппа H является нормальным делителем группы G, если

Определения

 Элементы               называются сопряженными, если

Отношение сопряженности является отношением эквивалентности:

1. Рефлексивность

2. Симметричность

3. Транзитивность
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 Группы и называются изоморфными, если

1. Существует взаимно-однозначное отображение 

2. Отображение сохраняет групповую операцию: 
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 Группа гомоморфна группе , если

1. Существует однозначное отображение      на     ,

2. Отображение сохраняет групповую операцию.
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 Базис в пространстве K:             матрицы операторов в этом базисе                 образуют 

группу D. Группы D и T изоморфны, поэтому гомоморфизм G на D так же является 

представлением.

Определения

 Пусть K – линейное пространство размерности n, группа                                 состоит 

из линейных операторов над K. Гомоморфизм группы G на T называют 

представлением группы G.

 Представления     и     называются эквивалентными, если существует невырожденная 

n-мерная матрица P, что .
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 Пусть K – унитарное пространство над комплексным полем, со скалярным 

произведением      . Для любого представления D существует эквивалентное ему 

унитарное представление.
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 Подпространство инвариантно для       если

 Представление T приводимо в K, если существует подпространство          

инвариантное для всех операторов        Представление неприводимо, если такого 

инвариантного подпространства не существует.

 Характером представления D называется функция комплексная функция на группе, 

Из свойств следа вытекает, что характеры эквивалентных 

представлений и характеры сопряженных элементов совпадают.
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 Пусть группа G имеет q неприводимых неэквивалентных представлений       

Рассмотрим произвольное представление D. Справедливо разложение:

Определения

 Характеры неэквивалентных неприводимых представлений взаимно-ортогональны:

 Критерий неприводимости:
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 Первая теорема Бернсайда: сумма квадратов размерностей неприводимых 

неэквивалентных представлений равна порядку группы:

 Вторая теорема Бернсайда: число неэквивалентных неприводимых представлений 

равно числу классов сопряженных элементов.
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Применение в квантовой механике

 Три основные задачи, решаемые с применением теории групп:

1. Классификация собственных чисел (энергий) и собственных функций 

гамильтониана с помощью неприводимых представлений его группы 

симметрии

2. Исследование расщепления вырожденных состояний под влиянием малых 

возмущений

3. Установление правил отбора

 Пусть квантовая система описывается гамильтонианом          , 

 Группа симметрии гамильтониана:

Введем операторы, действующие в гильбертовом пространстве L(V):

Эти операторы коммутируют с гамильтонианом:

 Пусть гамильтониан имеет набор собственных значений              каждому значению 

соответствует подпространство 

Из условия коммутации следует, что подпространства       являются инвариантными 

относительно операторов в итоге              образуют представления группы 

симметрии гамильтониана в собственных подпространствах.
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Применение в квантовой механике

 Собственные функции гамильтониана можно характеризовать тройкой индексов:

1. – номер неприводимого представления, к которому принадлежит 

2. – номер собственного подпространства (среди всех, 

соответствующих неприводимому представлению с номером q)

3. – номер строки представления 

 Пример: свободная частица в одномерном потенциальном ящике

 Группа симметрии гамильтониана                 имеет два одномерных неприводимых 

представления:
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Структура алмаза

 Пространственная группа структуры алмаза             :

1. Кристаллическая система – кубическая, решетка Браве – г.ц.к. с 

элементарными векторами

Ячейка Вигнера-Зейтца – ромбододекаэдр, голоэдрия –

2. Точечная группа 

3. Неэлементарные трансляции: базис

 Гамильтониан Фока электронной задачи:
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 Орбитой O нормального делителя H относительно группы G называется 

максимальная совокупность неэквивалентных неприводимых сопряженных 

представлений группы H: ).()(:, 1baaDbDHbGa a

 Индуцированное представление группы G по представлению D подгруппы H:
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Структура алмаза

Малая группа L относительно группы G, ее подгруппы H и неприводимого 

представления D: состоит из тех элементов группы G, которые дают эквивалентные 

представления среди всех представлений, сопряженных к D.

 Основная теорема. Пусть H – нормальный делитель группы G. Все неприводимые 

представления группы H распределим по орбитам относительно G. Пусть D –

неприводимое представление группы H из орбиты O, L – малая группа, 

соответствующая G, H и D. Справедливы утверждения:

1. Любое допустимое неприводимое представление малой группы индуцирует 

неприводимое представление группы G.

2. Все неприводимые представления группы G получатся точно один раз, если из 

каждой орбиты H относительно G выбрать одно неприводимое представление, 

построить для него малую группу и из каждого допустимого неприводимого 

представления малой группы индуцировать также одно (по 1. – неприводимое) 

представление.

aD

 Допустимым неприводимым представлением малой группы L называется такое, что 

его ограничение на подгруппу H расщепляется на неприводимые, эквивалентные D

(для этого достаточно, чтобы само D входило в разложение).



Структура алмаза

 Реализуем программу построения всех неприводимых представлений 

пространственной группы кристалла со структурой алмаза. Нормальным делителем 

пространственной группы является трансляционная группа 

 Введем вектор                              ,                 Представления группы     запишутся в виде

 Условия Борна – фон Кармана:

Трансляционная группа представляется в виде                            где     – циклическая 

группа с образующим элементом              Представления циклической группы 

одномерны и имеют вид:
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 Распределим представления группы T по орбитам относительно G.
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 Построим малую группу               соответствующую           T и G:,kGL ,)(kD
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Структура алмаза

 Допустимое неприводимое представление малой группы 

 Звезда общего типа:                                       Существует единственное допустимое 

неприводимое представление малой группы, оно одномерно. Следовательно, 

размерность индуцированного представления равна порядку точечной группы (порядку 

звезды):

 Чтобы построить индуцированное представление, разложим группу G в сумму 

левосторонних смежных классов по 
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 Построение всех неприводимых представлений пространственной группы сводится 

к построению неприводимых представлений группы если                     или группа

– симморфная, то эти представления легко получаются из представлений точечной 

группы 
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Структура алмаза

 Г-точка: ,0 hOG k

1Г

).(})|({ 0),()(

k

Rk

k R DeD ie

2Г

12Г

15Г'

25Г'

O
23 46

26 38



Зонная структура спектра

 Пронумеруем собственные функции гамильтониана Фока следующим образом:

каждому лучу     соответствует бесконечное множество собственных подпространств, 

звезды которых содержат данный луч. Упорядочим эти пространства по возрастанию 

энергии и пронумеруем пространства индексом   . Можно показать, что энергия        

является непрерывной функцией    в зоне Бриллюэна; энергия имеет симметрию 

точечной группы     :                     При фиксированном     функция энергии образует 

гиперповерхность в пространстве , которая называется энергетической зоной.
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