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Задача о металлической наночастице 
во внешнем электромагнитном поле
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Плазменные резонансы в 
наночастице
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Поляризуемость частиц разной формы

x
y

zx

z

y
kiki Ep 

















 



100

00

00





 ik

2ah

hm

hm 










)(13 )(

hm

k

hm
ik

L

abc













Резонансы для частиц разной формы

Геометрия Резонансное 
условие
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Примеры

Сечение рассеяния
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Сечения возбуждения наночастиц 
калия разного размера
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Собственные квазистатические моды 
пары металлических наночастиц

(a) (b)

(c)
(d)

(a) поперечная дипольная 

мода; 

(b) продольная дипольная 

мода; 

(c) поперечная 

квадрупольная мода; 

(d) линейная 

квадрупольная мода 
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Первый эксперимент по 2D решёткам
сдвоенных наночастиц

A.N.Grigorenko, A.K.Geim, H.F.Gleeson, et al., ”Nanofabricated media with 

negative permeability at visible frequencies”, Nature, vol. 438, pp. 335-338, 2005



Квадрупольный резонанс в 
двумерной решѐтке
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Coherent Coupling of Plasmon Resonances in Elastomeric Arrays of 

Silver Nanoparticles.

Serhiy Malynych and George Chumanov*, Department of Chemistry,

Clemson University, Clemson SC 29634

Серебряные наночастицы 
в резиновой матрице

Изменение  сечения возбуждения с 
с растяжением резиновой матрицы



Квазиэлектростатические волны в 
цепочках металлических наночастиц
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уравнение описывающее взаимодействие 
диполей в цепочке



W. H. Weber and G. W. Ford, 
Phys. Rev. B 70, 125429 (2004)
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Возбуждение быстрой продольной 
волны в конечной цепочке
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Возбуждение быстрой поперечной 
волны в конечной цепочке



Возбуждение медленной продольной 
волны в конечной цепочке
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Возбуждение медленной поперечной 
волны в конечной цепочке
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Зависимость коэффициента передачи 
по мощности от расстояния
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Элементы нанофотонных схем на 
основе наноцепочек

Разветвители Смеситель

«Наноожерелье»



Классический дифракционный 
предел
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Перенос субдлиноволновых изображений с 
помощью планарных и двумерных решѐток из 

нановолноводов
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где        ,        - амплитуды поля в волноводах при

Аналитические решения уравнений 
дискретной дифракции
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поля от соседних 
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Последовательная модификация исходного 
изображения в  квадратной решѐтке нановолноводов

(а) (б)

(в) (г)

;0 - (a) z

;25,0 - )б( 1 z

;5,0 - )в( 1 z

.75,0 - )г( 1 z



Перенос субдлиноволнового изображения буквы «  » с 
помощью квадратной решѐтки нановолноводов



Параметры моделирования:
размер элементарной ячейки – 2x2x2 нм3

количество итераций – 250000
размер сетки – 89x180x150 ячеек
временной шаг ~ 3,5 ac
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(а) – массив для которого 
осуществлялось моделирование;
(б), (в) и (г) - последовательная 
модификация субдлиноволнового 
изображения буквы «   » 
соответственно при z=0;60;120 нм.    
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Альтернативные системы для переноса субдлиноволновых 
изображений

Ono A., Kato J., and Kawata S.,  Phys. Rev. Lett., 95, 267407 (2005)

Длина волны - 488нм
Диаметр цилиндров - 20 нм
Высота – 50 нм
Период решѐтки – 40 нм
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Альтернативные системы для переноса субдлиноволновых 
изображений

Длина волны – 33 см
Диаметр цилиндров - 1 мм
Длина системы – 1 м
Период решѐтки – 1 см

P.A.Belov, at al,  Phys. Rev. B, 77, 193108 (2008 )
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Проекционная передача 
изображений



 Поток энергии:

Обычная (правосторонняя) среда

 Левосторонняя среда
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Отрицательная рефракция
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«Левосторонняя» идеальная линза

Объѐмное изображение 
получаемое левосторонней линзой
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Экспериментальные образцы 
«левосторонних» линз

R.A.Shelby, D.R.Smith, S.C.Nemat-Nasser, and
S.Schultz, Appl. Phys. Lett., 78, 489 (2001)

Размер элементарной ячейки 2.62 мм; 
Полученное разрешение λ/3 на длине 
волны ~ 6 см.

Элементарная ячейка первых 
левых сред

Изотропный левосторонний 
кристалл изготовленный Phantom 
Group (Boeing)



Левая среда на основе пар 
наночастиц

A.A.Zharov, R.E.Noskov,“Binary-nanoparticle left-
handed metamaterial for optical frequencies”, 
Metamaterials II; Edited by Vladimir Kuzmiak, Peter 
Markos and Tomasz Szoplik, Proc. of  SPIE, V. 6581, 
P. 658106, 4 May, 2007



Описание метаматериала в 
терминах средних полей

Базовые соотношения:
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Частотные зависимости эффективных 
диэлектрической и магнитной проницаемостей
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Области левостороннего отклика композита



Предел разрешения

Структура Ag/AlGaAs
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V.A.Podolsky, E.E.Narimanov, Opt. Lett., V.30, P.75(2005)
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Наноожерелья или сдвоенные 
наночастицы? 

A.Alu, et al., Opt. Express, 14, 1557 (2006)

(a) (b)

(c) (d)

Условия необходимого магнитного отклика:

1) Возбуждение мультипольной моды высокого 

порядка;

2) Обеспечение высокой добротности этой 

моды.

Противоречие!

Плюсы пары наночастиц:

1) Используются самые нижние моды;

2) Достаточно высокая добротность.

Очевидно преимущество пары 

наночастиц перед ожерельем



Заключение

 Проведѐн краткий обзор эффектов 
связанных с плазменным резонансом в 
системах металлических наночастиц

 Обсуждены возможности использования 
структур из наночастиц в нанофотонных 
приложениях 


