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Природа спин-орбитального взаимодействия
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Природа спин-орбитального взаимодействия
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Нерелятивистский переход

уравнение Дирака для 
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Спин-орбитальное взаимодействие в кристалле
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Считая, что Vext(r) мало меняется в пределах элементарной 
ячейки:

Волновая функция при Vext(r)≠0:

Одноэлектронное уравнение Шрёдингера в кристалле:

Волновая функция при Vext(r)=0:
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Спиновые расщепления электронов в объёмных полупроводниках
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Туннелирование через симметричный одиночный барьер (1)
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Пространственная ориентация электронных спинов в барьере (1)
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Волновые функции электронов
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Bastard G. Wave mechanics applied to semiconductor heterostructures. New York: Halsted Press, 1988
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Поляризационная эффективность при туннелировании электронов
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Туннелирование через асимметричный одиночный барьер (2)
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Пространственная ориентация электронных спинов в барьере (2)
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Спин-орбитальное расщепление в двумерных гетероструктурах

Объёмно-инверсионная асимметрия
(Bulk Inversion Asymmetry)

A3B5, A2B6, Tellurium

Интерфейсно-инверсионная 
асимметрия

(Interface Inversion Asymmetry)
(!Symmetric Si/Ge QW)

Структурно-инверсионная 
асимметрия

(Structure Inversion Asymmetry)

Отсутствие центра
инверсии

2D электронный газ
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Спин-орбитальное взаимодействие в 2D электронном газе
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Зеемановский вид:
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Распределения эффективных магнитных полей в k-пространстве
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Экспериментальное изучение эффектов спин-орбитального 
взаимодействия в 2D электронном газе

Магнитоосцилляционные явления.

Слабая локализация.

Фотогальванические эффекты.

Исследование времён спиновой релаксации.

Инжекция носителей заряда из магнитных материалов.

Комбинационное рассеяние.
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Осцилляции Шубникова- де Гааза

Значения константы
Рашбы в зависимости
от напряжения на
затворе

Осцилляции ШдГ при
T=0.3К при различных
напряжениях на затворе
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Осцилляции Шубникова- де Гааза
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Осцилляции Шубникова- де Гааза
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Спиновый полевой транзистор
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Восьмизонный гамильтониан Кейна

Гетероструктуры InAs/AlSb выращиваются на плоскости (001), при 
росте на этой  плоскости тензор деформации может иметь только три 
отличные от нуля компоненты: εXX=εYY, εZZ. Оси x, y, z направлены вдоль 

[100], [010], [001] соответственно. 
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Спин-орбитальное расщепление Рашбы
Гамильтониан вблизи дна зоны проводимости :
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Спин-орбитальное расщепление спектра электронов на уровне Ферми 
в гетероструктурах InAs/AlSb (без обменного взаимодействия)
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Константа Рашбы для электронов в КЯ AlSb/InAs/AlSb от концентрации
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Влияние обменного взаимодействия на энергетический спектра в КЯ

212105.1 −⋅= cmnS

212105.1 −⋅= cmnS

Обменное взаимодействие 
увеличивает расстояние 

между подзонами размерного 
квантования
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